skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Metlitski, Max A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It was recently found that the classical 3d O(N) model in the semi-infinite geometry can exhibit an “extraordinary-log” boundary universality class, where the spin-spin correlation function on the boundary falls off as < S(x) S(0)> ~ 1/ (log x)^q. This universality class exists for a range 2 ≤ N < Nc and Monte-Carlo simulations and conformal bootstrap indicate Nc > 3. In this work, we extend this result to the 3d O(N) model in an infinite geometry with a plane defect. We use renormalization group (RG) to show that in this case the extraordinary-log universality class is present for any finite N ≥ 2. We additionally show, in agreement with our RG analysis, that the line of defect fixed points which is present at infinite N is lifted to the ordinary, special (no defect) and extraordinary-log universality classes by 1/N corrections. We study the “central charge” a for the O(N) model in the boundary and interface geometries and provide a non-trivial detailed check of an a-theorem by Jensen and O’Bannon. Finally, we revisit the problem of the O(N) model in the semi-infinite geometry. We find evidence that at N = Nc the extraordinary and special fixed points annihilate and only the ordinary fixed point is left for N > Nc . 
    more » « less